
International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Security Analysis for Web Services

Compositions
Mohsen Rouached

m.rouached@tu.edu.sa

 College of Computers and Information Technology

Taif University, Taif, Saudi Arabia

Abstract— As more organizations adopt Web services for increasingly sensitive, mission-critical data the potential impact of

breaches of Web services increases both for individuals and organizations. Increasing impacts can result in a worsening of the

risk environment for all parties. Web services security and auditing is therefore an important concern. The current trend toward

representing Web services orchestration and choreography via advanced business process metadata is fostering a further

evolution of current security models and languages, whose key issues include setting and managing security policies, inter-

organizational security issues and the implementation of high level business policies in a Web services environment. In

particular, the management and maintenance of a large number of Web services needs appropriate authorization policies to be

defined so as to realize reliable and secure Web Services. The required authorization policies can be quite complex, resulting in

unintended conflicts, which could result in information leaks or prevent access to information needed. In this paper, we discuss

the authorization control for Web services compositions and propose a logic based approach to ensure the control access to

such compositions.

Index Terms— Web Services Composition, Security requirements, security policies

——————————  ——————————

1 INTRODUCTION

ecurity analysis for Web services has been the subject
of a growing interest for the security research com-
munity. The preoccupation in anticipating possible

security flaws in the SOA’s infrastructures is fundamental
for increasing the reliability of SOA’s, such that it can be
widely adopted, enabling the future Internet of Services.
Composed services are the main contribution the SOA’s
bring to enterprise business process automation consider-
ing the fact that no single service can satisfy users’ desires
in the majority of service oriented scenarios.
Despite the importance of Web service composition, secu-
rity issues have not been extensively investigated and
security concerns become one of the main barriers that
prevent widespread adoption of this new technology.
Compared to existing computer systems, providing secu-
rity for service oriented environments is much more chal-
lenging. The security challenges presented by the Web
services approach are formidable. Many of the features
that make Web services attractive, including greater ac-
cessibility of data, dynamic application-to-application
connections, and relative autonomy (lack of human inter-
vention) are at odds with traditional security models and
controls.
Although providing security for single Web services is a
demanding task, securing service composition process
seems to be more challengeable.
Service level security include basic aspects such as Au-
thentication, Authorization (Access Control), Non-
repudiation, Data Integrity and Confidentiality. Web ser-

vice can protect SOAP messages sent over insecure trans-
ports by embedding security headers. The WS-Security
standard defines how such headers may include signa-
tures, cipher texts and security tokens. There are several
emerging specifications of Web service security such as
WS-Policy, WS-Trust, WS-Privacy, and WS-Federation,
covering various facets of security in the context of Web
services. They are built on the top of WS-Security and
define enhancements to provide security protection to
Web service endpoints and the data communication be-
tween them.
Composition Level Security focuses on security issues
that may arise during Web service composition. In gener-
al, a Web service provider may have security concerns
regarding the Web services with which it must cooperate

during the composition process. Thus, it is fundamental

to support a security conscious composition of Web ser-

vices, that is, a composition of Web services taking into

account the security requirements of each Web service

provider and composing only those Web services that are

compatible with regards to such requirements. WS-

Security and other emerging specifications provide the

basic security functionalities, but they do not offer

enough support to ensure security in Web service compo-

sition. For instance, a first challenge is the definition, the

verification, and the enforcement of security policies as

the complexity of composite Web services grows. To cope

with this complexity, it is useful to design a conceptual

S

mailto:m.rouached@tu.edu.sa

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

model that gives a structured way to think about security

policies.

Another challenge is that non-functional concerns

should be addressed by external specifications for a better

separation of concerns and for more modular composi-

tion specification. Furthermore, mixing the specification

of the core logic of the composition with specifications of

security features and other non-functional concerns into

one unit would make the composition specification too

complex and hard to maintain and evolve. In order to

realize reliable and secure Web services, it is important to

authenticate and authorize the users appropriately. For

instance, to prevent problems such as an information

leak, suitable access control is needed for the users who

access the resources through Web services. By using the

standard policy description languages such as WS-Policy,

WSPL and XACML [10], it is possible to realize compli-

cated access control for Web services. However, the over-

all structure of these policies can become very complex,

reflecting the complexity of the Web services and roles

involved. There is an increased risk that an administrator

mistakenly defines conflicting policies which, if the

wrong choice is made, result in information leak or prevent

access to critical information in an emergency situation.

Defining and verifying security policies manually is error-

prone and cumbersome. An automated analysis is necessary

to ensure that the policies are conflict-free when defined at

first and as new security concerns are added and removed.

In this paper, we propose a formalism based on the stan-

dard Event Calculus (EC)[9] to specify authorisation poli-

cies for Web services composition. The paper is structured

as follows. Section 2 introduces the different issues asso-

ciated with security in Web services compositions. In Sec-

tion 3, we present how we specify the authorization policies

using the EC, and how the authorization conflicts can be

defined and checked. The encoding of the proposed specifi-

cation is presented in Section 4. Section 5 is dedicated to

related works. Finally, Section 6 concludes and outlines

future work.

2 SECURITY REQUIREMENTS FOR WEB SERVICES

COMPOSITIONS

Service Oriented Architecture allows for considerably

more complex interaction models than the classical

client/server model, including symmetric peer-to-peer

interactions. However, SOA is built on an insecure, un-

monitored, and shared environment, which is open to

events such as security threats. This may result in con-

flicts because the open architecture of Web services makes

it available to many parties, who may have competing

interests and goals. The information processed in Web

services might be commercially sensitive, so it is impor-

tant to protect it from security threats such as disclosure

to unauthorized parties. The research area of Web servic-

es security is challenging, as it involves many disciplines,

from authentication/encryption to access manage-

ment/security policies. Security concerns and the lack of

security conventions are the major barriers that prevent

many business organizations from implementing or em-

ploying Web services. Such security concerns are also

crucial when composing Web services. Similar to the

dynamic composition of web services there is a need for a

dynamic and consistent composition of the related securi-

ty policies of all participants. There are several unique

security-related characteristics that need to be addressed

to develop secure business processes with Web services

To illustrate the security requirements of Web service

compositions, [15] considered an example that consists of

a car manufacturer with several factories spread across

the world. In this scenario, the car maker integrates its IT

infrastructure with a supplier and a bank using Web ser-

vices. Items are ordered from the supplier and conse-

quently the bank offer a payment Web service to pay the

transaction. The process is deployed by the IT department

of the car manufacturer and the resulting Web service can

be accessed from any production site that goes out of

stock.

In this scenario, the operations of the partner Web servic-

es (supplier, bank) require authentication since it is not

acceptable that anyone who knows the URL of the service

or finds it in a UDDI registry can place orders or perform

bank transfers. The supplier and bank Web services must

be accessible only to business partners with appropriate

credentials. This means that the Web service composer

has to know the security policy of the partner services. The

security policy specifies which authentication mechan-

isms (username/password pairs, binary certificates),

encryption algorithms, digital signatures, etc. are sup-

ported by a partner web service. With authentication

mechanisms, the partner Web service can be sure of the

identity of the caller. The next step is to decide what the

caller is allowed to do. This is the focus of authorization.

Furthermore, it is also important that the factory which

passed the order to the supplier cannot deny having done

so (non-repudiation) and that nobody can claim to be that

factory and misuse its identity. A further requirement is

data integrity; both parties need appropriate support for

integrity i.e., if the factory orders one hundred items then

the security infrastructure must make sure that nobody

can tamper with the data on its way to the target web

service and change the order position. Appropriate secu-

rity mechanisms are also needed to avoid replay attacks

i.e., if malicious third-party copies the message for order-

ing car parts from the wire and resends it later, then the

order should not be accepted the second time. When in-

voking the bank’s payment Web service, it is essential

that nobody can see the sensitive information transferred

from the composite service to that partner (confidentiality).

Both parties have to negotiate and agree on the mecha

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

isms used to ensure confidentiality.

For instance, if we consider authorizations concerns, we

claim that an appropriate authorization framework is

needed to smooth the flow of a transaction between mul-

tiple services whilst respecting the privacy of the data

used. This is a complex task since each individual service

may have its own authorization requirements.

The traditional authorization service is not appropriate in

this kind of interactions where a coordinating service

would need to exchange policy and credential informa-

tion as well as managing the operation details. Managing

these authorization exchanges can lead to processing

bottlenecks within the service as well as privacy concerns

given that the coordinating service retains visibility and

control.

Authorizations may be defined for roles played by sub-

jects that are interacting in the course of a business

process. In contrast with conventional models, authoriza-

tions may be dynamically (re-)allocated to subjects signi-

fying the fact that they are allowed to produce or con-

sume particular events [6].

Our objective is to support compositions of Web ser-

vices taking into account the authorization requirements

of each Web service provider and composing only those

that are compatible regarding these requirements. To

fulfil this objective, we need to address two main issues.

First, it is mandatory to have a policy language that

should be well-defined, flexible enough to allow new

policy information to be expressed and extensible enough

to add new policy type. Second, we need to check the

security of the component Web services to determine

whether they are compatible with respect to the specified

security requirements. This requires the ability to model

the security characteristics of a Web service and to match

them according to the specified constraints.

3 LITERATURE REVIEW

Various aspects of security policy of web services have

been investigated. Some aspects were concerned with

how to specify a policy in a machine readable and user

friendly way at the same time, how to compose different

policies and how to prove that the web service does en-

sure its policy specification with each request. In what

follows, we review the most important approaches for

securing Web services compositions.

In [15], authors utilized WS-Policy and WS-Security to

propose a secure framework for the sake of securing

BPEL compositions. In confidentiality, XML-Signature is

used to providing integrity, and security token is given to

support authentication. The process container which is

implemented by a set of aspects in AO4BPEL is the main

component of proposed framework. AO4BPEL is an As-

pect-Oriented extension for BPEL which supports more

adaptable and modular WSs and is implemented as an

aspect aware orchestration engine for BPEL.

Davi Böger et al. propose a model in [4] wherein existing

standards are combined and tried to provide a practical

and consistent solution for secure service composition.

According to the approach, WS-Policy is utilized to speci-

fy policies and supports not only the orchestration lan-

guage (WS-BPEL), but also the business processes de-

scription language (WS-CDL). an approach presented in

[7] is proposed to build processes in accordance with

consumer security requirements and provider capabili-

ties. In order to express these characteristics, the sug-

gested approach utilizes Web Ontology Language (OWL)

ontology and Web Services Policy Framework (WS-

Policy) policies.

 [11] presented a framework to execute composite Web

service in a decentralized and secure. The main compo-

nent of the framework is a data structure called container

which is passedamong the participating web services in

the composition process. The container is encrypted and

authenticated so that the execution flow is secured and a

set of security requirements are addressed.

In [13], Judith E. et al, presented a policy-driven approach

integrated with Authentication and Authorization pat-

terns (AA-patterns) to compose services and restrict ser-

vice access to only authorized users. The authors point

out that the approach is applicable considering both static

and dynamic composition of services. According to the

approach, UML 2.0 is employed to specify AA-patterns as

well as Object Constraint Language (OCL) used for speci-

fications of semantic interfaces annotated with policies.

An RBAC access control model for WSC is proposed in

[16], where different constraints are expressed via access

control rules. These constraints may include separation of

duty constraints and past histories of service invocations

constraints which can also be dependent on one or more

parameters associated with a WS invocation. In order to

represent access control rules, a Pure- Past Linear Tem-

poral Logic Language (PPLTL) is used. In addition, role

translations enforce access control and they are defined in

a form of a table to map roles among different involved

organizations in the composition process. After that, if

user having a certain role invokes an operation of the

composite Web service, the role translation is carried out

through the enforcement system and a composite role is

created. A composite role includes a temporally ordered

sequence of roles and services involved in the invocation.

An integrated access control model for Web service

oriented architecture is presented in [17] wherein

Attribute-Based Access Control (ABAC) model is com-

bined with hierarchical RBAC. [18] proposed an extension

of this model to support composite service wherein policy

is enforced by composite service. This policy is a combi-

nation of the policies which protect the operations in-

voked in the composition process.

A semantic web service composition approach namely

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

SCAIMO with respect to security issues is presented in

[19]. In the SCAIMO framework, a secure task mat-

chmaker based on AI-planning and Web Service Model-

ing Ontology (WSMO) was introduced to match tasks

with operators and methods as well as take cares security

requirements of both service provider and requester. To

achieve this aim, three different constrains including

security related goal, choreography, and orchestration are

defined and checked during matchmaking process.

Kuter and Golbeck [20] proposed an approach to generate

trustworthy Web service composition. To achieve this

goal, they present a new formalism for Web service com-

position considering available user ratings as well as a

novel service composition algorithm called Trusty. More-

over, three trust computation strategies for Trusty are

defined; namely overly-cautious, overly-optimistic and

average. In their approach, the Hierarchical Task Net-

work (HTN) planner SHOP2 is advanced in order to gen-

erate trustworthy service composition by incorporating

reasoning mechanisms for social trust. The trust informa-

tion is used as input for this new procedure and as a re-

sult, the most trustworthy composition is produced to

solve a service composition problem.

Several approaches are based on WS-Security has been

utilized in to address security issues including confiden-

tiality and integrity. Nevertheless, basic security functio-

nalities can only be provided through WS-Security and

there is no enough support provided in those approaches

to ensure security for Web services compositions. With

respect to security policy languages, XACML and WSPo-

licy languages are employed to specify some Web servic-

es security policies. However, WS-Policy and XACML

lacks semantics. It in turn impedes the effectiveness of

computing the compatibility between the policies.

Some other approaches are based on RBAC model.

However, RBAC is insufficient method to use in service

composition due to the following reasons: firstly, RBAC

as inactive security model cannot dynamically admini-

strate permissions in states executions of working

progress. Following this, RBAC suffers from the inability

for specifying a fine-grained control in collaborative envi-

ronments. Next, RBAC provides no abstraction to capture

a set of collaborating users which operate in different

roles. Lastly, RBAC sometimes faces difficulties for en-

capsulation of all permissions to perform a job function.

A very recent and important work is addressed in [21].

This paper presents a comparative evaluation of state-of-

the-art approaches in service composition. A taxonomy of

service composition approaches with respect to security

issues is introduced as well. Each classification of the

proposed taxonomy including their respective approach-

es is illustrated in details. They consist of syntactic-based

and semantic-based approaches. Moreover, the compara-

tive evaluation of state-of-the-art approaches considering

specified criteria is provided for each classification

4. AN AUTHORIZATION MODEL FOR WEB SERVICES

COMPOSITIONS

In the context of Web services a service is seen as a re-

source that is provided within the system, to which access

is controlled. A service can also request other services and

is actively involved in computation. In our formal policy

model, a Web service can therefore be seen as both object

(st) and subject (ss). The type of request made to the Web

service is modeled as an action.

To provide an authorization specification that allows

expressing hybrid access control policies, we use two

Booleans autho+ and autho− to model positive and nega-

tive authorizations respectively. We propose also to ex-

tend authorizations policies to express temporal con-

straints that are of utmost importance for Web service

composition languages to keep their promises. Therefore

a positive authorization is denoted by autho+(s, o, a, t),

where s, o, a, and t stand for subject, object, action and

timepoint respectively. This authorization holds if the

value of autho+(s, o, a, t) equals true at time t and does not

hold otherwise. Similarly, autho−(s, o, a, t) models a nega-

tive authorization. Positive and negative authorizations

are used at the specification level to state who is or is not

allowed to do what. In case of conflicts, i.e. a subject has

both positive and negative authorization; a conflict reso-

lution rule (autho) determines the actual access decision.

For instance, R0 shows a conflict resolution rule, stating

that a negative authorization takes precedence over a

positive authorisation.

R0. autho+s, o, a, t) ∧￢ autho-s, o, a, t) → autho(s, o, a, t)

4.1 Authorization Model

To allow the necessary level of control over the behavior

of the Web service composition, authorization policies

should be defined in a language flexible enough to allow

the specification of conditions that can include multiple

triggering events that may take place over time. The EC

language seems to be the best basis to start from. We

adapt a simple classical logic form of the EC [9], whose

ontology consists of (i) a set of time-points,(ii) a set of

timevarying properties called fluents, (iii) a set of event

types (or actions). The logic is correspondingly sorted,

and includes the predicates Happens, Initiates, Terminates

and HoldsAt, as well as some auxiliary predicates defined

in terms of these. Happens (a, t) indicates that event (or

action) a actually occurs at time-point t. Initiates(a, f, t)

(resp. Terminates(a, f, t)) means that if event a were to

occur at t it would cause fluent f to be true (resp. false)

immediately afterwards. HoldsAt (f, t) indicates that fluent

f is true at t.

Then, the complete authorization enforcement model is

illustrated in Figure 1.

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

As shown, once the service source makes a request to

perform an action on the service target, the target ser-

vice’s access controller processes it. To do this, the access

controller evaluates the request by referring to the policy

repository and the access control model. If the action is

permitted, the access control model will proceed to do the

requested action. Otherwise, if the action should be de-

nied, the access control system will reject the action. We

precise that the scheme is symmetric, i.e each of the two

services could be target, source, or target and source at

the same time. As shown in Figure 1, we distinguish two

scenarios to represent the enforcement model. The first

scenario models the behaviour of the target service’s

access controller, generating a doAction event when an

action is permitted. This event would trigger the relevant

service behaviour rules thus causing the composition

state to change according to the specification. The second

one models a target service’s access control monitor re-

jecting the action to prevent a denied operation from

being performed. Given the set of parameters values for

the operations supported by services (Vp), DoAc-

tion(ss,Op(st,Action(Vp))) represents the event of the action

specified in the operation term being performed by the

service ss for the service st. In the same way, RejectAc-

tion(ss,Op(st,Action(Vp))) is the event that occurs after the

enforcement decision to reject the request by a particular

source service to perform an action. RequestA-

tion(ss,Op(st,Action(Vp))) represents the event that occurs

whenever a service source attempts to perform an opera-

tion on a target service. Therefore, this is the event that

will trigger a permission (or denial) decision to be taken

by the target service’s access controller.

4.2 Authorization specification

In order to correctly interact with the enforcement model

described above, each policy specification rule should

initiate the appropriate policy function symbol (permit,

deny) for each of the events. So for example, a positive

authorization policy rule should specify that the fluent

permit(ss,Op(st,Action(Vp))) holds when the event reques-

tAction(ss,Op(st,Action(Vp))) occurs and the constraints

that control the applicability of the policy hold. Addi-

tionally, the fluent permit(ss,Op(st,Action(Vp)))) should

cease to hold once the action has been performed thus

making it possible to re-evaluate the policy rule on sub-

sequent requests to perform the action. The EC represen-

tation of this functionality is indicated by the autho+

specification as follows.

(autho+)isValidComp(ss,Op(st,Action(Vp)))∧Constraint →
Initiates(requestAction(ss,Op(st,Action(Vp))),

permit(ss,Op(st,Action(Vp))), t)

(autho+) isValidComp(ss,Op(st,Action(Vp)))→

Terminates(doAction(ss,Op(st,Action(Vp))),

permit(ss,Op(st,Action(Vp))), t)

This also shows how each of the other policy types would

be represented by rules in the formal notation. For each

rule, the terms ss, st, Action and Constraint can be directly

mapped to the source service, target service, action, con-

straint and event clauses used when specifying policies.

The isValidComp predicate checks if the members of the

(ss,Op(st,Action(Vp))) tuple are consistent with the specifi

cation of the Web service composition.

The Constraint predicate is introduced to specify the pre-

and post-conditions for each operation. It can be

represented by a combination of HoldsAt terms. The au-

tho− specification represents a negative authorization

policy by stating that, if the Constraint holds and the event

requesting the action happens, the action is denied. It is

specified as follows.

(autho+)isValidComp(ss,Op(st,Action(Vp)))∧Constraint
→Initiates(requestAction(ss,Op(st,Action(Vp))),
deny(ss,Op(st,Action(Vp))), t)
(autho+) isValidComp(ss,Op(st,Action(Vp)))→
Terminates(doAction(ss,Op(st,Action(Vp))),
deny(ss,Op(st,Action(Vp))), t)
The second part of the rule shows how the deny fluent

will be terminated once the decision to reject that action

has been taken, thus allowing the specification to be ree-

valuated on subsequent requests. Note that the termina-

tion parts for these policies do not have any constraints

and can be generically specified for the whole service

composition.

4.3 Case study

Access to electronic patient records underlies certain r

strictions. The concrete requirements are sophisticated

and often dependent on circumstances that are not under

the control of the entities that are involved in the access.

Although we restrict ourselves here to a few require-

ments, more complex policies can be specified using the

model.

Scenario: Patients can always access their own medical

records, but not append any information. The clinician that

created a medical record is responsible for that record. The

responsible clinician can read and append to records he/she is

Figure 1 Authorization Enforcement Model

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

responsible for. In case of a national emergency situation (e.g.

epedemic disease) the protection of personal information stored

in health-records is relaxed. To ensure that a sufficient service

can be provided, all health-care professionals are allowed to read

information stored on electronic records.

The requirements expressend in EC are given by the fol-

lowing rules:

(R1)autho+(P,R,read,t)=isValidComp(R,Op(read(P,R)))∧Happe
ns(requestAction(S,Op(read(S,R)),t)∧Initiates(requestAction(S,
Op(read(S,R)),equalTo1(S, P),t) →
Initiates(requestAction(P,Op(read(P,R))),
permit(P,Op(read(P,R))), t)
(R2)autho−(P,R,append,t)=isValidComp(R,Op(append(P,R)))∧
Happens(requestAction(S,Op(append(S,R)), t)∧
Initiates(requestAction(S,Op(append(S,R)),equalTo(S, P), t) →
Initiates(requestAction(P,Op(append(P,R))),
deny(P,Op(append(P,R))), t)
(R3) ∀(t1, t2)Happens(doAction(C,Op(create(C,R), t1) ∧ t2 >
t1 → autho+(C,R, read, t2)
(R4) ∀(t1, t2)Happens(doAction(C,Op(create(C,R), t1) ∧ t2 >
t1 → autho+(C,R, append, t2)
(R5) Happens(requestAction(C,Op(read(C,R)), t) ∧
Initiates(requestAction(C,Op(read(C,R)), equalTo(C, hcProf), t)
→ autho+(C,R, read, t)
According to these rules, the owner P of a medical record

R can read his/her record, but not append ((R1),(R2)).

The responsible clinian C can read and append to records

R that he/she created. C is responsible, if he/she created

the resord in the past.)((R3),(R4)). In an emergency situa-

tion, health-care professionals can read information

stored in electronic patient records ((R5)).

The rules ((R1)...(R5)) are the basic elements that compose

the overall authorisation policy. Let P = {(R1), (R2)} now

be the policy that applies normally, Q ={(R5)} be the poli-

cy that applies in under emergency conditions, R = {(R0),

(R3), (R4)} (R0 introduced in Section 3.1) the simple policy

that applies over the whole policy composition. R defines

the conflict resolution and that the responsible clinician

can access the record. The latter is necessary, to ensure

that the temporal reference in the rules applies over the

whole policy composition:

S = R|| < emergency() > P; [emergency()](P||Q))+

The operators used are explained as follows:

 P||Q: Both, policy P and policy Q apply at the

same time.

 P+ : defines an iteration of policy P

 P;Q: Sequential composition of two policies. The

system is first governed by policy P and then by

policy Q.

 < w > P: The system is governed by policy P un-

less w holds. The state formula w can here indi-

cate the happening of an event.

 [w]P: The system is governed by policy P as long

as w holds.

It is also necessary to mention that all these operators

are then expressed using the same EC formalism.

4.4 Conflicts

In order to detect conflicts involving authorization poli-
cies, i.e. those that arise when it exist two policies defined
for the same source, target and action: one being an au-
thorization and the other one being a prohibition, we
introduce the authConflict predicate that holds if an autho-
rization conflict is detected. This predicate is defined as:
HoldsAt (permit (ss, Op (st, Action(Vp))), t) ∧
HoldsAt (deny (ss, Op (st, Action(Vp))), t)= ∧
HoldsAt (authConflict (ss, Op (st, Action(Vp))), t)

Example: Let us consider a typical example of authoriza-

tion conflict, which arises when the same service is as-

signed to two roles that have opposite authorization per-

missions.

To enable a complete specification of the different conflict

cases that may arise, we introduce a further set of predi-

cates, events, and fluents. First, we introduce the predi-

cate ContradictoryRoles(r1, r2, t, a) to describe that two

roles r1 and r2 have opposite permissions for processing

an action a at timepoint t. Here, we just recall that the role

can be either ss or st. Then, the events introduced are As-

signServiceRole(s, r) that denotes a request of a service s for

assignment to a role r, RolePermitAction(r, a) that specifies

a request for permission of an action a for a role r, and

RoleDenyAction(r, a) that defines a request for denial of

action a for a role r.

Finally, three fluents are specified: Assigned(s, r) indicates

that service s is assigned to a role r, RoleHavePermission(r,

a) defines that a role r is permitted to process action a, and

AuthorizationConflict(r1, r2) denotes that there is an autho-

rization conflict in the composition (a service is assigned

to contradictory roles).

Considering the elements described above, it is possi-

ble to define rules that can be used to recognise conflict-

ing situations in the authorization policy specification.

These rules are shown as follows.

(C1) Happens(RolePermitAction(r,a),t)∧￢HoldsAt(RoleHaveP
ermission(r, a), t) → Initiates(RoleHavePermission(r, a),RoleP
ermitAction(r, a), t)
(C2) Happens(RoleDenyActivity(r, a), t)∧HoldsAt(RoleHaveP
ermission(r,a),t)→Terminates(RoleHavePermission(r,
a),RoleDenyActivity(r, a), t)
(C3)Happens(AssignUserRole(s,r1),t)∧￢HoldsAt(Authorizati
onConflict(r1, r2), t) →
Initiates(Assigned(s, r1),AssignUserRole(s, r1), t)
(C4)HoldsAt(RoleHavePermission(r1,a),t)∧￢HoldsAt(RoleHa
veP ermission(r2, a), t)|HoldsAt(RoleHaveP ermission(r2, a),
t)∧(￢HoldsAt(RoleHaveP ermission(r1, a), t) →
ContradictoryRoles(r1, r2, t, a)
(C5)HoldsAt(Authorized(s,r2),t)∧Happens(AuthorizeRequest(r
1,s),t)∧ContradictoryRoles(r1,r2, a, t) → Hap-
pens(conflictEvent, t)∧Initiates(AuthorizationConflict(r1, r2),

Figure 3 Conflicts Specification

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

conflictEvent, t)
The first rule initiates the fluent RoleHavePermission(r, a)

when the event RolePermitAction(r, a) happens if this flu-

ent is currently not true. The second rule implements

deny for role r to process the action a as a termination of

fluent RoleHavePermission(r, a) when RoleDenyActivity(r, a)

event happens. The third rule assigns service s to the role

r when AssignUserRole(s, r) event happens if Authoriza-

tionConflict(r1, r2) between the role r1 and some other role

r2 is not present in the composition process. The fourth

rule defines two roles, one of which has and another one

does not have permission for some action. Here we note

that we not fix which role has positive permission and

which role has negative permission.Thus, Contradictory-

Roles is symmetrical regarding r1 and r2. Finally, the fifth

rule defines a notion of authorization conflict: the user

requested the assignment for the second of two contradic-

tory roles. These rules are generic and can be composable

to obtain a general constraint about the composition

process.

5 VALIDATION

In our study we utilize theorem proving for verifying that

a given policy is conflict-free and proving that add and

remove operations do not introduce conflicts. In this sec-

tion, we describe a method for representing EC in the

SPIKE language. The SPIKE induction prover has been

designed to verify quantifier-free formulas in theories

built with first order conditional rules. SPIKE was chosen

for the following reasons: (i) its high automation degree,

(ii) its ability on case analysis (to deal with multiple oper-

ations), (iii) its refutational completeness, (to find counter-

examples), and (iv) its incorporation of decision proce-

dures. SPIKE proof method is based on the so called cov-

er set induction: Given a theory SPIKE computes in first

step induction variables where to apply induction and

induction terms which basically represent all possible

values that can be taken by the induction variables. Given

a conjecture (rule or a policy) to be checked, the prover

selects induction variables according to the previous

computation step, and substitutes them in all possible

way by induction terms. This operation generates several

instances of the conjecture that are then simplified by

rules, lemmas, and induction hypotheses.

The ingredients of our encoding are shown in what fol-

lows;
Data. All data information manipulated by the system is
ranged over a set of sorts. This data concerns generally
the argument types of events and fluents.
Events. We consider that all events of the system are of
sort Event, where the event symbols are the constructors
of this sort. These constructors are free as all event sym-
bols are assumed distincts.
Fluents. The sort Fluent respresents the set of fluents. All

fluent symbols of the systems are the constructors of sort
Fluent, that are also free.
Time. We use the sort of natural numbers, Nat, which is
reflected by constructors 0 and successor succ(x) (mean-
ing x + 1).
Axioms. We express all predicates used in EC as boolean
function symbols. The signatures of these functions sym-
bols and others additional functions are as follows:
Happens : Event × Nat → Bool
Initiates : Event × Fluent × Nat → Bool
Terminates : Event × Fluent × Nat → Bool
HoldsAt : Fluent × Nat × Nat → Bool
Clipped : Fluent × Nat × Nat → Bool
HoldsAt and Clipped are defined within a time range. For
instance, HoldsAt(f, t1, n) is defined within the range [t1,
t1 + n].
Finally, the EC axioms necessary to do the verification
process are expressed in conditional equations as follows:
(A1) event ≠ Noact ∧ Happens(p(event, t1)) = true ∧
Initiates(event, f, t1) = true → HoldsAt(f, t1, 0) = true
(A2) HoldsAt(f, t1, t) = true ∧ Clipped(f, t1 + t, s(0)) =
false → HoldsAt(f, t1, s(t)) = true
(A3) event ≠ Noact ∧ Happens(p(event, t1)) =true ∧ Termi-
nates(event, f, t1) = true → Clipped(f, t1, s(0)) = true
(A4) event 6= Noact ∧ Happens(p(event, t1 + t + s(0))) =
true ∧ Terminates(event, f, t1 + t + s(0)) = true →
Clipped(f, t1, s(s(t))) = true
(A5) Happens(p(Noact, t1 + t + s(0))) = true →
Clipped(f, t1, s(s(t))) = Clipped(f, t1, t + s(0))
Authorization rules. In the same way, we can express the
autho+ and the autho− rules in equational form. For in-
stance, the requirement (R1) in Section 4 is written as
follows:
(R1) isValidComp(R,Op(read(P,R))) = true ∧
Happens(requestAction(S,Op(read(S,R)), t) = true ∧
Initiates(requestAction(S,Op(read(S,R)), equalTo(S, P), t) =
true→Initiates(requestAction(P,Op(read(P,R))),permit(P,Op(re
ad(P,R))), t) = true
Finally, we build an algebraic specification from EC speci-
fication. Once building this specification, we can check all
authorization rules by means the powerful deductive
techniques (rewriting and induction) provided by SPIKE.
All the generated axioms can be directly given to the
SPIKE prover, which automatically orientes these axioms
into conditional rewrite rules. Then, given as inputs the
specification of the composition expressed in algebraic
equations and the authorization rules to be checked,
when SPIKE is called, either the authorization rules proof
succeed, or the SPIKE ’s proof-trace is used for extracting

all scenarios which may lead to potential deviations.

There are two possible scenarios. The first scenario is-

meaningless because conjectures are valid but it comes

from a failed proof attempt by SPIKE . Such cases can be

overcome by simply introducing new lemmas. The

second one concerns cases corresponding to real devia-

tions. The trace of SPIKE gives all necessary informations

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

(events, fluents and timepoints) to understand the incon-

sistency origin. Consequently, these informations help

designer to detect policies problems in the composite

Web service.

6 CONCLUSION

Despite the importance of Web service composition, secu-

rityissues have not been extensively investigated and

security concerns become one of the main barriers that

prevent widespread adoption of this new technology.

In this paper we have discussed the security requirements

and challenges of securing Web services compositions.

We have also reviewed the most important efforts that

addressed this problem statement by exposing their

strengths and limits. As a contribution to this important

concern, we have presented a framework for managing

authorization policies for Web service compositions. The

methodology was supported by a formal representation

of conflicts scenarios that may arise during the composi-

tion process. There are several directions for future work

to further improve the presented work. One thread in our

future work will focus on the policies refinement and the

generalization of the reasoning technique to handle other

security properties. We plan also to study forensics as-

pects for services composition. Indeed, investigations of

breaches of security or suspicious events in, or transaction

auditing of SOAs, would employ digital evidence in an

effort to reconstruct the events under investigation. Such

evidence would be helpful to financial fraud investiga-

tors, business arbiters, potential investors, and judicial

actors. However, unlike traditional forensics implementa-

tions, applying forensics to service oriented infrastruc-

tures introduces novel problems such as platform inde-

pendence, need for neutrality and comprehensiveness,

and reliability issues because of interdependencies be-

tween services and the ability to build global services

using Web service compositions processes.

REFERENCES

[1] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin. A

calculus for access control in distributed systems. In CRYPTO

’91: Proceedings of the 11th Annual International Cryptology

Conference on Advances in Cryptology, pages 1–23, London,

UK, 1992. Springer-Verlag.

[2] G.-J. Ahn and R. Sandhu. The rsl99 language for rolebased

separation of duty constraints. In RBAC ’99: Proceedings of the

fourth ACM workshop on Rolebased access control, pages 43–

54, New York, NY, USA, 1999. ACM Press.

[3] E. Bertino, S. Jajodia, and P. Samarati. Supporting multiple

access control policies in database systems. In SP ’96: Proceed-

ings of the 1996 IEEE Symposium on Security and Privacy, page

94, Washington, DC, USA, 1996. IEEE Computer Society.

[4] Boger, D., et al., A Model to Verify Quality of Protection Policies

in Composite Web Services. 2009 IEEE Congress on Services,

ed. L.J. Zhiang. 2009. 629-636.

[5] W. K. Edwards. Policies and roles in collaborative applications.

In CSCW ’96: Proceedings of the 1996. ACM conference on

Computer supported cooperative work, pages 11–20, New

York, NY, USA, 1996. ACM Press.

[6] W.-J. V. D. Heuvel, K. Leune, and M. P. Papazoglou. Efsoc: A

layered framework for developing secure interactions between

web-services. Distrib. Parallel Databases, 18(2):115–145, 2005.

[7] Garcia, D.Z.G. and M.B. Felgar de Toledo. Ontology-Based

Security Policies for Supporting the Management of Web Ser-

vice Business Processes. in Semantic Computing, 2008 IEEE In-

ternational Conference on. 2008.

[8] H. Koshutanski and F. Massacci. An access control framework

for business processes for web services. In XMLSEC ’03: Pro-

ceedings of the 2003 ACM workshop on XML security, pages

15–24, New York, NY, USA, 2003. ACM Press.

[9] R. Kowalski and M. J. Sergot. A logic-based calculus of events.

New generation Computing 4(1), pages 67–95, 1986.

[10] T. Moses. Extensible access control markup language (xacml)

version 2.0 3, Feb 2005.

[11] Biskup, J., et al., Towards secure execution orders for composite

web services. 2007 IEEE International Conference on Web Ser-

vices, Proceedings, ed. L.J. Zhang, et al. 2007. 489-496.

[12] M. Siponen, R. Baskerville, and T. Kuivalainen. Integrating

security into agile development methods. hicss, 07:185a, 2005.

[13] Rossebø, J. and R. Bræk, A policy-driven approach to dynamic

composition of authentication and authorization patterns and

services. Journal of Computers, 2006. 1(8): p. 13.

[14] T. Woo and S. Lam. Authorization in distributed systems:

a new approach. Journal of Computer Security, 2:107–136, 1993.

[15] Charfi, A.; Mezini, M.; , "Using aspects for security engineering

of Web service compositions," Web Services, 2005. ICWS 2005.

Proceedings. 2005 IEEE International Conference on , vol., no., pp.

59- 66 vol.1, 11-15 July 2005

[16] Paci, F., R. Ferrini, and E. Bertino, Identity Attribute-based Role

Provisioning for Human WS-BPEL processes. 2009 Ieee Interna-

tional Conference on Web Services, Vols 1 and 2, ed. E. Damia-

ni, J. Zhang, and R. Chang. 2009. 535-542.

[17] Srivatsa, M., et al. An access control system for web service

compositions. in ICWS. 2007.

[18] Emig, C., et al. An access control metamodel for Web Service-

oriented architecture. in ICSEA. 2007.

[19] Zhu, J.Q., Y. Zhou, and W.Q. Tong, Access control on the com-

position of Web services. International Conference on Next

Generation Web Services Practices, Proceedings, ed. A. Abra-

ham and S.Y. Han. 2006. 89-93.

[20] Kuter, U. and J. Golbeck, Semantic Web Service Composition in

Social Environments. Semantic Web – ISWC 2009, Proceedings,

2009. 5823: p. 344-358.

[21] Homa Movahednejad, Suhaimi Bin Ibrahim, Mahdi Sharifi,

Harihodin Bin Selamat, and Sayed Gholam Hassan Tabatabaei.

Security-aware web service composition approaches: state-of-

the-art. In Proceedings of the 13th International Conference on In-

formation Integration and Web-based Applications and Services (ii-

WAS '11). ACM, New York, NY, USA, 112-121. 2011.

